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Abstract— The backward differentiation formulae are considered as the most popular and the best class of linear multistep method s
for handling stiff problems, however, they have their drawbacks as they are A —stable for k = 1, 2, A(«), stable for k= 3, ..., 6 and non
self — starting for k > 2. This paper focused on the development and implementation of a new higher order numerical method by a
modification of the backward differentiation formulae for the solutions of stiff initial value problems. The methodology used for the
derivation of the new method was the multistep collocation approach, while the test equation approach was used to plot their regions of
absolute stability. From the convergence analysis, the methods were consistent and zero — stable, hence convergent and of uniform
order p = k. Also, results show that the eight step BMBDF were A- stable. The new method resolves the stability problem and overcomes
the non self - starting property inherent in the standard backward differentiation formulae (BDF). The eight step BMBDF was applied to
odes arising from real life and results show that they were efficient and accurate and compete well with other existing methods. Also, the
solution curves of the eight step BMBDF compete well with the exact solutions and the well-known ode23 solver. Since the new method
was A —stable, it was recommended for the solutions of stiff initial value problems resulting from real life.

Keywords — Backward differentiation, A — stability, region of absolute stability, convergence, consistency.

backward differentiation formulae (TOBBDF) developed by

I. INTRODUCTION [15], L — Stable Block Backward Differentiation Formula

Differential equations, which describe how quantities ~developed Dby [2] and Extended Block —Backward
change across time or space, arise naturally in science and ~ Differentiation formula (EBBDF) developed by [9]. [12]
engineering, and indeed in almost every field of study where ~ developed the Extended 3 — point Superclass of Block
measurements are taken [8]. A wide variety of these natural Backward Differentiation Formula for solving stiff initial
phenomena arising in the physical world are modelled into ~ Value problems. [1] developed the Improved Two-Point
ordinary differential equations (ODEs). Unfortunately, many Block Backward Differentiation Formulae for Solving First
of these problems do not have analytic solutions, the Order Stiff Initial Value Problems of Ordinary Differential
Robertson and Vanderpol equations are examples, hence the ~ Equations. The methods were derived by modifying the

need for good numerical methods to approximate their existing Two-Point Block Backward Differentiation
solutions. Formulae for Solving First Order Stiff Initial Value Problems

Many researchers have proposed various forms of linear ~ Of Ordinary Differential Equations (12BBDF) of [10]
multistep methods for the solutions of stiff ordinary Convergence and stability analysis established that the new
differential equations, among which is the Backward Methods were A — stable. [4] developed a Two-step Hybrid
Differentiation Formula (BDF). The BDF is considered as the Block Backward Differentiation Formula for the solution of
most popular class of linear multistep methods which was  Stiff ordinary differential equations
introduced by [6]. These methods can be efficiently used for This paper uses the approach similar to that of [5] by
the solutions of stiff problems, the only drawback being the modlfymg the Backward Differentiation Formu Iqe and hen_ce
lack of A-Stability for order exceeding two. Since their ~ constructing new block methods for the solutions of stiff
introduction, most of the improvements in the class of linear ~ Problems of ordinary differential equations using multistep
multistep methods have been based on thembecause of their  collocation approach of [13]
special properties [3].

A lot of extensions and improvements have been made on Il. THE BACKWARD DIFFERENTIATION
the basis of the backward differentiation formulae such as; FORMULAE
fully implicit 3- point block backward differentiation formula The backward differentiation formula, a numerical
(BBDF) developed by [11], three — step optimized block  method in the category of linear multistep method falls in the
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family of implicit methods for the numerical integration of
ordinary differential equations.
The general formula is given as

Kk
Zaj Ynij=hp 1
1=0 ©)

I1l. THE MODIFIED BACKWARD
DIFFERENTIATION FORMULAE
The modified backward differentiation formulae are a
new class of methods derived by modifying the backward
differentiation formulae (BDF) defined in (1).
The general kstep MBDF is defined by the difference
equation

Za yn+j +ak yn+k h[ﬂv 2 "n+v-2 +IB—1 n+v—1]
@

where

v= Sfor even k and % for odd k (3)

IV. DERIVATION OF THE MODIFIED BACKWARD
DIFFERENTIATION FORMULAE

The modified backward differentiation formulae (M BDF)
is derived using the multistep collocation approach of
Sirisena [13] and Onumanyi et al [14]. The procedure
involves the construction of numerical methods of step
number k = 8

The continuous formulation of the k- step MBDF (2) is
given as

k-2
Y09 = 20 (Yo + 0o () Fruz + Bra (0 o]
=0 @
where v is as given in (3). Applying the multistep
approach,

1 X, K.\ WK
2 k
1 Xn+l Xn+1 - Xn+1
D=
2 k
1 Xn+k—2 Xn+k—2 oot Xn+k—2
k-1
O 1 2Xn+v—2 an+v—2
k-1
_O 1 2Xn+v—1 o an+v—1 _ (5)

and the elements of C = D~!are given in (6)

Aoy Qyy Q21 hB, 2. hB, 1. 1
Cop Oy Aon  NBian  hBL,
C=
| o1 Prka Aaa NBiakn hﬂv—l,k+l_ (6)
D and C must satisfy
DC =1 )

From (7) it follows that the columns of C = D! give the
continuous  coefficients  a;(x),j=0,1,...k—2

hﬁv—l (x) and hﬂv—z (x).

V. EIGHT STEP BLOCK MODIFIED BACKWARD
DIFFERENTIATION FORMULAE (BMBDF)

Substituting k = 8, v = 4 in (4) gives,

6
y(X) = Zaj (X) yn+j + h[ﬂZ (X) fn+2 + ﬂ3 (X) fn+3]
i=0 ®
Applying the multistep collocation approach, its
continuous formulation is

(60 - )(h—n)(4h ~)(5h - n)(3h =)’ (2N —1)° yo+ 1(5h = )(6h - n)(4h — 1)3h - )*(2h *17)2

Y +x,)= 7 3 8
320h 2400
71t —n)(4h —n)(8h - )(6h — 7)(26h ~197)(3 — rz) _ n(Gh—n)(h—n)(6h - y)(4h - n)* (2h - )* Yo
576h° e 36h°
_ n(6h—n)(8h—7)(h- )3 -n)* (2h— '7)Z 10 =m)(4h - )(6h—n)(3h—n)* (2h - n)* y..
96h° 720h°
_ n(4h—n)(h—n)(h-n)@3h-n)*(2h-7)* V. 1(5h~7)(2h - 5)(4h —)(h ~ 7)(Bh ~7)(3h — n)Z
8640° ot 48n’
. 1h=)(3 = n)(4h - )(5h — n)(6h — p)(2h - 77)Z
360

©)
Evaluating (9) at 1 = 7h, 8h and its first derivative at 1 =
h,4h,5h, 6h,7h, 8h gives the BMBDF method for k = 8.

Your +70Y,.5 =350y, =525y, ., + 749y, ., + 70y, —%yn UL APy (11 N (a)
Yo~ 70Y,.5 +560,,5 ~3150y,, ~5376Y,., +7350y,., + 720y, ~35Y, = ~4200nf, ., ~67200f _srvvrvrrrernd (b)
5 50 300 175 10 60 300 200
Yot Yos o Voot e Vg e =y == hf = =B c
501y o 17 Yoes T1g7 Yoos T1g7 Yoot gy Ve Ve tgp Yo T g e Tagy e Tag7 e ©
2, 8y Vo Y b Yo Y = b - 2, -
375 6 5 n+5 ned n+2 125 nsl 375 n 25 2 25 3 25
1 w3 23 3 1
Y FT e I e =hf 4 20f s =S e
g0 s Tagg s g Y s T Ve Tog Ve ¥ y o s ©
R 1 4 16
+ =YY —— =hf,,, +=hf_. —7hf ......................... f
1350y - ym R s e ) 135y 9 25 Mo (f)
143 2845 755 4225 302 29 597 1955
Sy — oYY, = —hf - hf ——hf
1068770 " Yms T gag Yoot g Yoa * gmg e T g7 Y0 Thag Yt T Tgg e T 17g 0 178 -0
11768 69345 12800 167755 16776 823 ~_ 96660 151968
Yiis = oar Vs + s e = hat o = e Mo =Ny, +*hf ()
1331 1331 7 Ta3an T azan e pan U T iaa T 1ma 1331 1331
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VI. CONVERGENCE AND STABILITY ANALYSIS

OF THE EIGHT STEP BLOCK MODIFIED
BACKWARD DIFFERENTIATION FORMULAE
(BMBDF)

Here, the order and stability region of the Eight Step Block
Modified Backward Differentiation Formulae (BMBDF)
shall respectively be computed and plotted.

Defn 8.1
The order of the k - step linear multistep method

k k
Zajynﬂ' = hZ,BJ— LI
j=0 j=0

is p if Co=C1=...= Cp=0 but Cp+1 =0

where
. k
Co = Zaj
j=0

c:=> (jai~5))

Co= =i - [ 4,1,q = 23....

q! (q-D!

*j=0 j=0
(11)
The BMBDF (10) is equivalent to
70 749 5% -350 70 % 1 0| Yra
720 7350 5376 -3150 560 70 0 1||Ym2
~501 -525 900 150 -15 1 0 0| Y=
~24 375 0 375 24 -1 0 0f|Ynu
-45 575 300 450 -127 -5 0 0|| Yns
~216 -2475 1600 1350 360 91 0 0|| Yns
~16776 167755 124800 69345 —11768 1331 0 0| Yn.r
|-1208 12675 9060 5690 -1068 143 0 0| Y],
‘Tloooooooo_yn_
-35 00 00 0 0 OffYne
10 0 0 0 0 0 0 O}|Yns
0 00 0O O0 Of|VYna
0 000 O 0 O0ffVYns
10 0 0 0 O O O Of|VYns
823 00 00 0 0 O}|Y,,
158 00000 0 0f|Y,s_

[0 -420 -700 0 0 0 0 0][f,,]
0 -4200 -6720 0 0 0 0 0| f,
180 900 600 180 0 0 0 O|f,.,
0 180 480 0 180 0 0 0| f, .,
0 30 600 0 0 00 0]f,.
0 1350 2400 0 0 30 0 O [
0 96660 151968 0 0 0 0 12| f, .,
|0 7164 11730 0 0 0 6 0] |f.e],
[0 0000 OO0 O]f f, ]
000O0O0OO0O|f,
000O0O0OO0O||f,.,
0000000 O|Ff,
0000000 O|f,
0000000 O|f,
0000000 O|Ff,
0000000 0fff] 12
where,
=) 70 749 - 525 ~350 70
9 720 7350 5376 ~3150 560
10 —501 —525 900 150 -15
R B P I T L P BTN D B[O P
0 2 ' —45 72 575 [° 300 [7° 450 [° —127 |
10 ~216 —2475 1600 1350 —360
23 ~16776 —167755 124800 69345 -11768
58 —1208 ~12675 9060 5690 ~1068
—10 1 0 0 0 ~420 —700 0
3 0 1 0 0 — 4200 ~6720 0
7 0 0 0 180 900 600 0
e 1 R
Yy 0 0 0 0 1350 2400 0
1331 0 0 0 0 96660 151968 0
143 0 0 0 0 7164 11730 0
0 0 0 0
0 0 0 0
0 0 0 0
o |- |o|l- |ol- |o
Bo=| ol Bo=| o 1B =| o =]
0 30 0 0
0 0 0 12
0 0 6 0
(13)

Substituting the values of

—_— e — — — — — — —

Uy, Oy, Oy, g, Oy O O Oy, gy By, By By By Bas Bss B Br By

into (11) gives
C, =C, =C, =C,

and

:C4:C5:C6:C7:CBZO
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2.78x10™
3.33
1.19x10™
—~4.76x1072
-1.19x10*"
-7.14x10*
-8.34
-5.07

o = (14)

Since
Co=C1= C2= C3= C4= C5= Co= C7= C8=0 but co=cp41#0 -
the eight step BMBDF has order p = 8 and its error constant
is as shown in (14). Thus, the BMBDF k = 8 is consistent.

VIL

Using the approach of [7], the eight step BMBDF (18)

ZERO STABILITY OF THE EIGHT STEP

expressed as

BMBDF

-35

Ynu

70 749 —525 —350 70 3 1 0

720 7350 —5376 —-3150 560 -70 0 1 Yoz
—-501 —-525 900 150 -15 0 0 Ynis
—24 -375 0 375 24 -1 0 O Ynea
—45 —-575 300 450 -127 -5 0 0 Ynis
—216 — 2475 1600 1350 —-360 91 0 O Ynie
—16776 —-167755 124800 69345 -11768 1331 0 O Yni7
| —1208 12675 9060 5690 —1068 143 0 O | Ynsl
19 900000 off Y

3 y

35 0 00 O0O0O0O0 2

10 0 0 0 0 0 0 0| Yns

1 0 0 00 0 0 OffYna

-2 0 0 0 0 0 0 OffYns

~10 0 0 0 0 0 O Of|Yns

-823 0 0 0 0 0 0 O] Yny
|-58 0 0 0 0 0 0 Of|Vag],
[0 -420 -700 0 0 0 0 O][f,,
0 -4200 -6720 0 0 0 0 O] f. .,
180 900 600 180 0 0 0 O] f, .4

0 180 480 0 180 0 0 O[] f. .,

0 300 6000 0 0 0 0 Of]f .

0 1350 2400 O O 30 0 O] f. .

0 96660 151968 0 O 0 0 12| | f...,
|0 7164 11730 0 0 0 6 0| f g

0000000 O]f¢ T
00000000
0000000 Ofrf,
0000000 O0|rf,
0000000 O0|f,
0000000 O|f,

000000 0O0|f,

Lo 00000 00|f, 5

where,
70 749 -525 -350 70 _TSS 10
720 7350 —-5376 -3150 560 -70 0 1
501 -525 900 150 -15 1 0 0
AO _| —24 -375 0 375 24 -1 00
—45  -575 300 450 -127 -5 0 0
—216 — 2475 1600 1350 -360 91 0 O
-16776 —167755 124800 69345 -11768 1331 0 O
| -1208 -12675 9060 5690 -1068 143 0 0]
% 0 00O0O0OOTO O
35 00 0O0O0O0O
-10 0 0 0 0 0 O O
A®_| -1 000O0O0O0O0
-2 00O0O0O0O0OTO
-10 0 0 0 0 0 O O
-823 0 00 OO OO
|-58 000000 0f 16)

Substituting the values of A and A® into the equation

() = det| 2IA@ — A® |=0

and evaluating

gives4=0,0,0,0,0,0,0,0,1. Hence, the method is zero

stable.

VIII.

REGION OF ABSOLUTE STABILITY OF THE

EIGHT STEP BMBDF

The approach used by [16] is applied to the block methods
to determine their regions of absolute stability. Using the test

equation y = Ay with z=Ahf =1y, f, = Ay, forq =

AVt fn+2 = AYn4o IS substituted into (18) to give
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Y, :Ey — 70y, +350,., +525Y,,, — 749y,., — 70y, +9y —42004Y,.,, = TOONAY, . 3-evererreerernrerssneseneessnd (a) B 10
3
Yous = 10Y,,6 —560y,.5 +3150y,,, +5376y,,, - 7350y, ,, — 720Y,,, + 35y, — 420002y, ., = 672002y, 3cevcerrierssirivcsisienn (b)
0O 0O0OO0OO0OO0OTO 35
_i, 5, (S0 00 175 10 60, 300 200 © 10
Yoa =gorYme 167 Vs T1a7 Y T a7 Ve Tagy Y Tmonn TTe7 U Tagy e Ty 0O 0O0O0OO0OO0OO0O —
1 8 8 1 12 32 12 501
Yo =78 Yors * g Yos + Yot = g Yo+ g2 o 52 W = 5 M¥ocs = e g @ 000000 O 1
375
ymzﬁioyn,6 ;é;y” Ey", y”+ yM —y +hy,,, +2h2y, 3—7h}y e @) 1
0O 00OO0OO0OO0TO O ~Iso
Yo = 12503’"5 15ym5—%ymﬁ%y"’ﬁ%yml—ﬁy +h4y“+:h}y” %hlym ................................ (f) 1
0O 000 O O0OU OO ~13E
143 2845 755 4225 302 29 597 1955 1
Yois = 1068y EYHO Y/vs_ﬁ " T o7 n.1+534y ‘ﬁh}%z 178 el L P ﬁh}'YHJ ------------- (9) 29
11768 69345 124800 167755 16776 823 96660 151968 0 O O 0 0 0 0
Yo szmyn 5’@%4*@%3 *mymz +E‘/m*@yn+ﬁ Yoo + Hh \ep—()| 534
823
1331hAy” @ 0O 000 0O -
an A7-=L 1331 (20)
BExpressing (17) in matrix form gives; bstituting the val A4 and 4@ h bili
g g ; Substituting the values of A** and A** into the stability
r 17 7 0 _ (0) (WA i
0 40 W55 %0 70 % 10 || Yo polynomial p(2) = det (24" — A™) gives
7 AMIE0 G5 350 S0 -0 0 1|y P(A) =
b, 11 30, 17530 -0 5 -1 m 451584 . 6136704 , , 13229888 , , 56448 , , 254016 , .
41 +—1 00 - réz® + réz’ - réz® + 'z’ + réz
w15 6 167 167 167 167 501 Yiss 98913265 494566325 494566325 98913265 5556925
8 2.4 2, 2,8 14y 12096 , , 30171456 , , 4412352 . . 6096384 , , 9097536 , ,
12 2% 2% 25 12 375 w o 2 g+ S 2 rz+ rz
> » g B W Y 4087325 494566325 494566325 98913265 494566325
2 S ~u+l s P w O y | 4402044, , 526848 ;o 2032128 , 2506608 , . 451584
I m ) NS VR n+5 98913265 19782653 98913265 98913265 98913265
- _1-= - 1 = = =
5 b 3y B0 &5 Yaie 1080544 o, | 451584
W7 5 15 TH - 31 98913265 98913265
— —I+— —_—1-— — — =1
% W 8w 1068 178 Yo (21)
“lor. %o, 175 LIS 1460 e M7y y Differentiating (21) with respectto z, gives
L1331 1331 1331 1331 1331 1331 1331 1331°) LYns8 ]
i ~ | 3612672 ;42956028 o, 79379328 . 395136 , ; 254016 , ,
10 |r 7 98913265 494566325 494566325 98913265 1111385
3 Yn 72576 , . 120685824 , , 4412352 ., 18289152 , , 36390144 , ,
+ R rz- + rz: + rz- + rz
0 35 y 4087325 494566325 98913265 98913265 494566325
0000000 20 n-2 8805888 , 1580544 ; , 2082128 , 5193216 ; 1580544 ,
501 y 98913265 19782653 08913265 98913265 98913265
1 n-3 N
0000OOO E =0 (22)
000000 1 Yn-a The stability polynomial (21) and its derivative (22) are
1?0 Yis plotted in a MATLAB environment to give the absolute
000O0O0COO "3l y stability region of the BMBDF method for k = 8 in fig. 1.
n-6
0 00 O0OOTP O AN I
534 || Ynr
0000000 -2 y il
=L 1331/ L /n-8 ] (18)
.
where il
(0
A = Sk
[ 35 | i
70 4202+749 700-55 -0 70 5 10 -
720 42002+47350  67202-5376  -3150 560 000 1
60 175 30 175300 505 -1 s
t—1  —+—1 —+—1 — — — 0 0
167" 167 167 167 167 167 167 501
8 12 2, 12 8 1 -
— —1+l —1-1 -— — 0 0
1% % %' % 125 375 A [ [ [ [ [ [ [
3 —Z—é 2741 3 lz_g L 0 0 1 0 [ 1 15 ? 2% 3
2 12 2 5 300 60 Rl
4 11 16 3 . U P ] ) B
% Ty STl RRT Fig. 1. Region of Absolute Stability of the BMBDF for
0 597 4205 1055 75 -2845 431 k =
— —1+ —_—1-— — 1 —1 0 =8
%71 89 356 TR 1068 178
16776 96660, 167755 15198 124800 69345 11768 o 2,
| 1331 1331 1331 1331 1331 1331 1331 1] (19)
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IX. NUMERICAL EXPERIMENTS

In this section, the newly constructed BMBDF for k =8
was used to solve some real life systems of ordinary

differential equations.

Problem 1: Moderately Stiff Linear System
y, =998y, +1998y,

y, =-999y, —1999y,
y,(0)=1y,(0)=1t<[0,10],h=0.1
The exact solutionis given by

y, (t) = 4exp(—t) — 3exp(—1000t)

y, (t) = —2exp(-t) + 3exp(—1000t)

[NB: This is the torsion spring oscillator with dry and
viscous friction and it arises in physics]

Problem 2: Stiff Non Linear chemical reaction problem
y, =-0.1y, —199.9y,

y, =-200y,
y,(0)=2,y,(0)=1x€[0,2],h=0.1
The exact solutionis given by
Yy, (X) = exp(—0.1x) + exp(—200x)
Y, (X) = exp(—200x)
Problem 3: Stiff Linear System
Y, =—21y,(X) +19Y, (x) = 20y,(x)
Y, =19y,(x) - 21y, + 20y, (X)
Y5 =40y, (x) ~40y, (X) ~ 40y, (X)
¥1(0)=1,y,(0)=0,y;(0) =—1 x<[0,10],h=0.1

The exact solution is

y,(X) = % (e + e *°*(cos(40x) + sin( 40x))

Y, (X) = 1 (e — e ***(cos(40x) + sin( 40x))

2
y.(X) = %(Ze‘40X (sin( 40x) — cos(40x))
Problem 4: Stiff Non Linear System (Van der pol’s
Equations)
yl. =Y

yzl =Y, +tuy, a- y12)
t [0,70]

The Van der Pol’s Equation is an important Kind of
second-order non-linear auto-oscillatory equation. It is a
non-conservative oscillator with non-linear damping.

X. SOLUTION CURVES

The solution curves to problems 1 and 4 are displayed in
Figs2 & 3

] + 1] BMBDFS

i )iz BMBDFB
—&— y[1] Exact
—5— y[2] Exact

b
®
&
®
§
UE@

Solution y

g
2 d L I TR B L L L
1 2 3 4 5 6 71 8 9 10
Time t
Fig. 2. Solution Curve for Problem 1Using the BMBDF k =
8
15 T T
+ y[1] BMBDF8
+ y[2] BMBDF8
10 O y[1] ode23s
& O y[2] ode23s

Solution y

I I I I I I
10 20 30 40 50 60 70

Fig. 3. Solution Curve for Problem 4 Using the BMBDF k =
8
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XIl.

ABSOLUTE ERRORS

The absolute errors of problems 1, 2 and 3 compared with otherexisting methods are shown on tables 1 — 3

Table I: Absolute Errors for Problem 1 Using Eight Step Methods

GBDF8 (Brugnano and Trigiante) BMBDF8

X errl err2 errl err2
1.0 1.53E-06 7.63E-07 2.69E-09 1.35E-09
15 9.49E-07 4.75E-07 2.62E-09 1.31E-09
2.0 5.79E-07 2.89E-07 2.19E-09 1.10E-09

Table 1I: Absolute Errors for Problem 2 Using Eight Step Methods

GBDF8 (Brugnano and Trigiante) BMBDF8

X errl err2 errl err2

1.0 5.33E-08 5.78E-08 3.09E-11 9.58E-22
15 4.48E-09 3.18E-12 3.02E-11 6.16E-22
2.0 2.12E-09 5.62E-11 2.98E-11 5.86E-22

Table Ill: Absolute Errors of the first component to Problem 3 Using Eight Step Methods

GBDF8, Brugnano and Trigiante (1998) BMBDF8

X error error

1.0 9.02E-07 4.43E-08
15 1.01E-08 2.44E-08
2.0 6.29E-06 1.20E-08

XIl. DISCUSSION OF RESULTS

The solution curves in Fig. 2 and 3 shows the performance
of the new BMBDF k = 8 on a linear and non-linear systems
of ordinary differential equations when compared with the
exact solution and ode23 solver. It is observed that the
BM BDF gave good approximations to the stiff problems. The
solution curve to problem 1 was plotted within the range of 0
< x < 10and showed very good performance when compared
with the exact solution. Similarly, the solution curve to the
Van der pol equation compete exceedingly well when
compared with ode23 solver.

The results of Problems 1, 2 and 3 using the BMBDF k =
8 were compared with the generalised backward
differentiation formulae (GBDF) of Brugnano and Trigiante
(1998) as shown on Tables 1 - 3. The results show that the
new methods performed well with marginal absolute errors
and converge much faster to the theoretical solution than that
of Brugnano and Trigiante (1998).

XIIl. CONCLUSION

This study has focused on the derivation of a modified
linear multistep method based on the backward
differentiation formulae for the solutions of stiff initial value

problems of ordinary differential equations. The multistep
collocation approach was used to derive the block form of the
MBDF k = 8.

Convergence analysis of the new method was carried out
and it was observed that the method was consistent and zero
stable, hence convergent. Ako, the region of absolute
stability of the new method was plotted and showed that the
method is A — stable.

The newly constructed method was used to solve real life
initial value problems of ODEs and the results were seen to
be efficientand accurate. The results of the study showed that
the new block method compete favourably well with those of
some well-known researchers.
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