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Abstract— The backward differentiation formulae are considered as the most popular and the best class of linear multistep method s 

for handling stiff problems, however, they have their drawbacks as they are A – stable for 𝒌 = 𝟏, 𝟐, 𝑨(𝜶), stable for 𝒌 = 𝟑, … , 𝟔 and non 

self – starting for 𝒌 ≥ 𝟐. This paper focused on the development and implementation of a new higher order numerical method by a 

modification of the backward differentiation formulae for the solutions of stiff initial value problems. The methodology used for the 

derivation of the new method was the multistep collocation approach, while the test equation approach was used to plot their regions of 
absolute stability. From the convergence analysis, the methods were consistent and zero – stable, hence convergent and of uniform 

order 𝒑 = 𝒌. Also, results show that the eight step BMBDF were 𝑨- stable. The new method resolves the stability problem and overcomes 

the non self - starting property inherent in the standard backward differentiation formulae (BDF). The eight step BMBDF was applied to 

odes arising from real life and results show that they were efficient and accurate and compete well with other existing methods. Also, the 

solution curves of the eight step BMBDF compete well with the exact solutions and the well-known ode23 solver. Since the new method 

was A – stable, it was recommended for the solutions of stiff initial value problems resulting from real life.  
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I. INTRODUCTION 

Differential equations, which describe how quantities 

change across time or space, arise naturally in science and 

engineering, and indeed in almost every field o f study where 

measurements are taken [8]. A wide variety of these natural 

phenomena arising in  the physical world  are modelled into 

ordinary differential equations (ODEs). Unfortunately, many 

of these problems do not have analytic solutions, the 

Robertson and Vanderpol equations are examples, hence the 

need for good numerical methods to approximate their 

solutions.  

Many researchers have proposed various forms of linear 

multistep methods for the solutions of stiff ordinary  

differential equations, among which is the Backward  

Differentiation Formula (BDF).  The BDF is considered as the 

most popular class of linear multistep methods which was 

introduced by [6]. These methods can be efficiently used for 

the solutions of stiff problems, the only drawback being the 

lack of A-Stability for order exceeding two. Since their 

introduction, most of the improvements in the class of linear 

multistep methods have been based on them because of their 

special properties [3].  

A lot of extensions and improvements have been made on  

the basis of the backward differentiat ion formulae such as; 

fully implicit 3- point  block backward  differentiat ion formula 

(BBDF) developed by [11], three – step optimized block 

backward  differentiat ion formulae (TOBBDF) developed by 

[15], L – Stable Block Backward Differentiat ion Formula 

developed by [2] and Extended Block Backward  

Differentiation formula (EBBDF) developed by [9]. [12] 

developed the Extended 3 – point Superclass of Block 

Backward  Differentiat ion Formula for solving stiff initial 

value problems. [1] developed the Improved Two-Point 

Block Backward Differentiation Formulae for Solv ing First 

Order St iff In itial Value Problems of Ordinary Differential 

Equations. The methods were derived by modifying the 

existing Two-Point Block Backward Differentiat ion 

Formulae fo r Solv ing First Order Stiff Initial Value Prob lems 

of Ordinary Differential Equations (12BBDF) of [10]. 

Convergence and stability analysis established that the new 

methods were A – stable. [4] developed a Two-step Hybrid  

Block Backward Differentiation Formula for the solution of 

stiff ordinary differential equations  

 This paper uses the approach similar to that of [5] by  

modifying the Backward Differentiation Formulae and hence 

constructing new block methods for the solutions of stiff 

problems of ordinary differential equations using mult istep 

collocation approach of [13] 

II. THE BACKWARD DIFFERENTIATION 

FORMULAE 

 The backward differentiat ion formula, a numerical 

method in the category of linear multistep method falls in the 
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family  of implicit  methods for the numerical integration of 

ordinary differential equations.  

The general formula is given as  
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III. THE MODIFIED BACKWARD 

DIFFERENTIATION FORMULAE 

 The modified  backward d ifferentiation  formulae are a 

new class of methods derived by modify ing the backward  

differentiation formulae (BDF) defined in (1).  

The general 𝑘 step MBDF is defined by the difference 

equation 
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where 

𝑣 =
𝑘

2
 for even 𝑘 and 

𝑘+1

2
 for odd 𝑘  (3) 

IV. DERIVATION OF THE MODIFIED BACKWARD 

DIFFERENTIATION FORMULAE 

The modified backward differentiat ion formulae (MBDF) 

is derived using the multistep collocation approach of 

Sirisena [13] and Onumanyi et al [14]. The procedure 

involves the construction of numerical methods of step 

number 𝑘 = 8 

 The continuous formulation of the 𝑘- step MBDF (2) is 

given as 
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where 𝑣  is as given in (3). Applying the mult istep 

approach,  
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 and the elements of 𝐶 =  𝐷−1 are given in (6) 
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𝐷 and 𝐶  must satisfy  

IDC =     (7) 

From (7) it follows that the columns of 𝐶 = 𝐷−1 give the 

continuous coefficients  𝛼𝑗(𝑥), 𝑗 = 0,1, … ,𝑘 − 2 , 

ℎ𝛽𝑣−1 (𝑥) and ℎ𝛽𝑣−2 (𝑥). 

V. EIGHT STEP BLOCK MODIFIED BACKWARD 

DIFFERENTIATION FORMULAE (BMBDF) 

Substituting 𝑘 = 8, 𝑣 = 4 in (4) gives, 
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 Applying the multistep collocation approach, its 

continuous formulation is  
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Evaluating (9) at ʅ = 7ℎ, 8ℎ and its first derivative at ʅ = 

ℎ, 4ℎ, 5ℎ, 6ℎ,7ℎ, 8ℎ gives the BMBDF method for 𝑘 = 8.  
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VI. CONVERGENCE AND STABILITY ANALYSIS 

OF THE EIGHT STEP BLOCK MODIFIED 

BACKWARD DIFFERENTIATION FORMULAE 

(BMBDF) 

Here, the order and stability region of the Eight Step Block 

Modified Backward Differentiation Formulae (BMBDF) 

shall respectively be computed and plotted. 

Defn 8.1 

The order of the  𝑘 - step linear mult istep method 
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The BMBDF (10) is equivalent to  
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





 (13) 

Substituting the values of 

876543210876543210 ,,,,,,,,,,,,,,,,, 
 

into (11) gives 

0876543210 ========= ccccccccc
  

and 
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=9c 
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






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  (14) 

Since 

𝑐0=𝑐1= 𝑐2= 𝑐3= 𝑐4= 𝑐5= 𝑐6= 𝑐7= 𝑐8= 0 𝑏𝑢𝑡 𝑐9=𝑐𝑝+1≠0 , 

the eight step BMBDF has order 𝑝 = 8 and its error constant 

is as shown in (14). Thus, the BMBDF 𝑘 = 8 is consistent. 

VII. ZERO STABILITY OF THE EIGHT STEP 

BMBDF  

Using the approach of [7], the eight step BMBDF (18) 
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  (15) 

where,   
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




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0000000
3

10

)1(A

,  (16) 

Substituting the values of 
)0(A and 

)1(A  into the equation 

  0det)( )1()0( =−= AA and evaluating 

gives 𝜆 = 0, 0, 0, 0, 0, 0, 0,0, 1. Hence, the method is zero 

stable. 

VIII. REGION OF ABSOLUTE STABILITY OF THE 

EIGHT STEP BMBDF 

The approach used by [16] is applied to the block methods 

to determine their reg ions of absolute stability. Using the test 

equation 𝑦′ = 𝜆𝑦  with 𝑧 = 𝜆ℎ, 𝑓 = 𝜆𝑦, 𝑓𝑛 =  𝜆𝑦𝑛 , 𝑓𝑛 +1 =

 𝜆𝑦𝑛 +1 , 𝑓𝑛 +2 =  𝜆𝑦𝑛 +2 is substituted into (18) to give 
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Expressing (17) in matrix form gives; 
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where, 
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Substituting the values of 𝐴
(0)

 and 𝐴
(1)

 into the stability  

polynomial 𝜌(𝜆) = det  (𝜆𝐴
(0)

− 𝐴
(1)

) gives 
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Differentiating (21) with respect to z, gives 
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The stability polynomial (21) and its derivative (22) are 

plotted in a MATLAB environment to give the absolute 

stability region of the BMBDF method for 𝑘 = 8 in fig. 1. 

 
Fig. 1. Region of Absolute Stability of the BMBDF for 

8=k  
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IX. NUMERICAL EXPERIMENTS 

In this section, the newly constructed BMBDF for 𝑘 = 8 

was used to solve some real life systems of ordinary  

differential equations.  

Problem 1: Moderately Stiff Linear System   
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The exact solution is given by 
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 [NB: This is the torsion spring oscillator with dry and  

viscous friction and it arises in physics] 

Problem 2: Stiff Non Linear chemical reaction problem 
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Problem 3: Stiff Linear System  
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The exact solution is  
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Problem 4: Stiff Non Linear System (Van der pol’s 

Equations) 
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The Van der Pol’s Equation is an important kind of 

second-order non-linear auto-oscillatory equation. It is a  

non-conservative oscillator with non-linear damping.  

X. SOLUTION CURVES  

The solution curves to problems 1 and 4 are displayed in  

Figs 2 & 3  

 
Fig. 2. Solution Curve for Problem 1Using the BMBDF 𝑘 =

8 

 
Fig. 3. Solution Curve for Problem 4 Using the BMBDF  𝑘 =

8 
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XI. ABSOLUTE ERRORS  

The absolute errors of problems 1, 2 and 3 compared with other existing methods are shown on tables 1 – 3 

Table I: Absolute Errors for Problem 1 Using Eight Step Methods  

GBDF8 (Brugnano and Trigiante) BMBDF8  

 

x err 1 err2  err1  err2 

1.0 1.53E-06 7.63E-07  2.69E-09  1.35E-09 

1.5 9.49E-07 4.75E-07  2.62E-09  1.31E-09 

2.0 5.79E-07 2.89E-07  2.19E-09  1.10E-09 

Table II: Absolute Errors for Problem 2 Using Eight Step Methods  

GBDF8 (Brugnano and Trigiante) BMBDF8 

 

X err 1 err2   err 1 err2 

1.0 5.33E-08 5.78E-08   3.09E-11 9.58E-22 

1.5 4.48E-09 3.18E-12   3.02E-11 6.16E-22 

2.0 2.12E-09 5.62E-11   2.98E-11 5.86E-22 

Table III: Absolute Errors of the first component to Problem 3 Using Eight Step Methods  

GBDF8, Brugnano and Trigiante (1998) BMBDF8 

 

X error    error  

1.0 9.02E-07    4.43E-08  

1.5 1.01E-08    2.44E-08  

2.0 6.29E-06    1.20E-08  

 

XII. DISCUSSION OF RESULTS 

The solution curves in Fig. 2 and 3 shows the performance 

of the new BMBDF 𝑘 = 8 on a linear and non-linear systems 

of ordinary differential equations when compared with the 

exact solution and ode23 solver. It is observed that the 

BMBDF gave good approximations to the stiff problems. The 

solution curve to problem 1 was plotted within the range of 0 

< x < 10 and showed very good performance when compared  

with the exact solution. Similarly, the solution curve to the 

Van der pol equation compete exceedingly well when 

compared with ode23 solver. 

 The results of Problems 1, 2 and 3 using the BMBDF 𝑘 =

8  were compared with the generalised backward  

differentiation formulae (GBDF) of Brugnano and Trigiante 

(1998) as shown on Tables 1 - 3. The results show that the 

new methods performed well with marginal absolute errors 

and converge much faster to the theoretical solution than that 

of Brugnano and Trigiante (1998). 

XIII. CONCLUSION 

This study has focused on the derivation of a modified  

linear multistep method based on the backward 

differentiation formulae for the solutions of stiff in itial value 

problems of o rdinary d ifferential equations. The mult istep 

collocation approach was used to derive the block form of the 

MBDF 𝑘 = 8. 

Convergence analysis of the new method was carried out 

and it was observed that the method was consistent and zero  

stable, hence convergent. Also, the region of absolute 

stability of the new method was p lotted and showed that the 

method is A – stable. 

The newly constructed method was used to solve real life 

initial value problems of ODEs and the results were seen to 

be efficient and accurate. The results of the study showed that 

the new block method compete favourably well with those of 

some well-known researchers.  
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